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Abstract. A phase diagram for a surface-interacting long flexible polymer chain in a poor solvent
where the possibility of collapse exists is calculated using an exact enumeration method. A model
of a self-attracting self-avoiding walk on a simple cubic lattice was considered and up to 16 steps in
series were evaluated. The phase diagram indicates that while the boundary between the expanded
and collapsed phases is straight in the bulk, it exhibits a bend in the surface resulting in two adsorbed
collapsed phases separated by an adsorbed expanded phase. This is attributed to competition
between the entropic fluctuations and effects due to monomer–monomer attraction.

When a polymer chain interacts with an impenetrable surface its conformational properties are
strongly modified in comparison with its bulk properties. This is due to a subtle competition
between the gain of internal energy and a corresponding loss of entropy at the surface. In most
of the theoretical work aimed at understanding this phenomena, the adsorption of an isolated
long flexible polymer chain in a good solvent by an attractive wall is considered [1–3]. For
this case there is an unbinding temperature analogous to a tricritical point and in its vicinity a
crossover regime is observed where a simple scaling law holds [4–7]. The essential physics is
derived from a model of a self-avoiding walk (SAW) on a semi-infinite lattice, with an energy
contribution,εa, for each step of the walk along the lattice boundary. This leads to an increased
probability, characterized by the Boltzmann factorω = exp(−εa/kβT ), of making a step along
the attractive wall, sinceεa < 0, ω > 1 for any finite-temperatureT (kβ is the Boltzmann
constant). As a consequence, at low temperature the polymer chain becomes adsorbed on the
surface while at high temperature all polymer conformations have almost the same weight and
a non-adsorbed (or desorbed) behaviour prevails. The transition between these two regimes
is marked by a critical adsorption temperatureTa, with a desorbed phase forT > Ta and
an adsorbed phase forT < Ta. At T = Ta one may define the crossover exponentφ, as
M ∼ Nφ , whereN is the total number of steps andM the number of steps on the surface.
Both the surface and the bulk critical exponents have been calculated using renormalization
group methods [4, 8], exact enumeration methods and Monte Carlo simulations [9–13]. For
a two-dimensional system exact values of the exponents have been found by using conformal
invariance [14].

The situation is, however, not so clear when the surface-interacting polymer chain is in a
poor solvent and the possibility of collapse exists. A SAW with attractive nearest-neighbour
interactions between nonconsecutively visited sites (often referred to as the self-attracting
SAW or SASAW for short) represents a polymer chain in a poor solvent that can undergo a
collapse transition where the chain contracts from an expanded state to a globule state when
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the temperature is lowered. Above the criticalθ temperature (often referred to as theθ -point)
the chain behaves as it would in a good solvent and below this temperature it behaves like a
compact globule. Theθ -point separating these two regimes is also a tricritical point [3].

A surface-interacting polymer chain in a poor solvent is, therefore, expected to exhibit
a phase diagram characterized by many different universality domain of critical behaviour.
The competition between solvent-induced monomer–monomer attraction and the surface–
monomer interaction may lead to the possibility of the coexistence of different regimes and
multicritical behaviour. Attempts have been made to study such phase diagrams and critical
exponents using several approaches [3,11,15]. For two dimensions the transfer matrix method
has been used for a directed polymer chain [16] whereas for the nondirected (isotropic) version
the exact enumeration method has been used [11–13]. In both cases three phases, desorbed
expanded, desorbed collapsed and a single adsorbed phase have been found. Recently Vrbová
and Whittington [17] used the Monte Carlo method to study the phase diagram of a finite-
length (∼100) polymer chain in a poor solvent and found four phases: desorbed expanded
(DE), desorbed collapsed (DC), adsorbed expanded (AE) and adsorbed collapsed (AC). The
phase diagram presented by them shows a phase boundary between the AE and DC phases
leading to two points on the phase diagrams where three phases coexist (‘triple point’).

In this letter we consider the problem of simultaneous adsorption and collapse of a linear
polymer chain on a cubic lattice and investigate the phase diagram and critical parameters
using the exact enumeration technique. One of the advantages of this technique is that the
scaling corrections are correctly taken into account by a suitable extrapolation scheme. As
shown by Grassberger and Heeger [9], to achieve the same accuracy with the Monte Carlo
method one has to consider a polymer chain of about two orders of magnitude longer than in
the exact enumeration method.

We consider SASAW on the cubic lattice restricted to the half-spaceZ > 0 (an
impenetrable hard wall). The walk starts from the middle of the surface. LetCN,Ns,Nm be
the number of SAWs withN steps, havingNs (6 N) walks on the surface andNm nearest
neighbours. We obtainedCN,Ns,Nm forN 6 16 for the cubic lattice andN 6 26 for the square
lattice by the exact enumeration method.

Now we consider the interaction energy,εs , associated with each walk on the surface and
εm for monomer–monomer interaction. The partition function of the attached chain is

ZN(ω, u) =
∑
Ns,Nm

CN,Ns,Nmω
NsuNm (1)

whereω = e−εs/kT andu = e−εm/kT . ω > 1 andu > 1 for an attractive force. The reduced
free energy for the chain can be written as

G(ω, u) = lim
N→∞

1

N
logZN(ω, u). (2)

In general, it is appropriate to assume that asN →∞
ZN(ω, u) ∼ Nγ−1µ(ω, u)N (3)

whereµ(ω, u) is the effective coordination number andγ is the universal configurational
exponents for walks with one end attached to the surface. The value ofµ(ω, u) can be
estimated using the ratio method [18] with an associated Neville table. From equations (2)
and (3) we can write

logµ(ω, u) = lim
N→∞

1

N
logZN(ω, u) = G(ω, u) (4)

ZN(ω, u) is calculated from the data ofCN,Ns,Nm using equation (1) for givenω andu.
From this we construct linear and quadratic extrapolants of the ratio ofZN(ω, u) for the adjacent
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values ofN as well as the alternate one. Results for alternateN give better convergence. When
u = 1 andω = 1 the value ofµ is found to be 4.678 which is in very good agreement with
the value given in [2, 15]. Since the results may depend on the extrapolation scheme used,
we examined the accuracy of the above scheme by considering a two-dimensional system and
calculated the phase diagram. These results are in very good agreement with those of Foster
et al [12] who used a Pad́e analysis and differential approximants.

The value ofωc(u) at which the polymer becomes adsorbed for a given value ofu is found
from the plot ofG(ω, u) as a function ofω. G(ω, u) is found to remain fairly constant until
ω = ωc: at this value it increases consistently as a function ofω, indicating the presence
of adsorption. Since this feature holds for all values ofu we used this method to compute
the entire adsorbed phase boundary. Foru = 1, the value ofωc is 1.38 which is in very
good agreement with the value (=1.36) reported in [15], but is about 6% lower than the value
(=1.47± 0.02) reported in [11].

Another method to compute the adsorption phase boundary is based on the equation (see
equation (3))

γ 0 − γ = log(Z0
NZN−2/Z

0
N−2ZN)

log(N/N − 2)
(5)

where the superscript ‘0’ indicates the corresponding quantity of the bulk (i.e. without surface).
In this case one calculatesγ 0 − γ for differentN using the above equation and plots it as a
function ofω. The location of the adsorption point,ωc, is determined from the intersection of
successive approximations toγ 0 − γ in the limit asN →∞.

The phase boundary separating the expanded and collapsed phases is found from the plot
ofG(ω, u) as a function ofu for a givenω. The transition pointuc is located from the peak of
∂2G(ω, u)/∂εm

2 at constantω. Forω = 1, the value ofuc is 1.76 which is in good agreement
with the value found by Finsyet al [19]. This value is, however, higher (by about 33%) than
the one found by Monte Carlo simulation [20, 21]. Since the method is found to work for all
values ofω, i.e. in both the bulk and the adsorbed regimes, we used it to calculate the phase
boundary between the expanded and globule phases for all values ofω. However, asω is
increased the values ofG(ω, u) do not remain as smooth as at lower values ofω, introducing
some inaccuracy in the value ofuc. For example, considering a 16-step walk on a square
lattice we find the collapse transition takes place atuc = 1.89 which is in good agreement
with the value found by Fosteret al [12] using a 28-step walk and is about 2.5% lower than the
value (=1.94± 0.004) reported by Grassberger and Hegger [9]. The same value ofuc should
be found forω → ∞ as in this case the polymer chain should be confined to the surface.
However, as given below, the value found by us for large values ofω, uc ' 1.84, is about
2.5% lower. This may provide an estimate of the error in the values ofuc at large values ofω
compared with that atω = 1.

The phase diagram found by us is shown in figure 1. The phase boundary separating
the expanded and collapsed phases in the bulk is straight and parallel to theω-axis. Where
this uc-line meets the special adsorption lineωc, all the four phases DE, DC, AE and AC
coexist. Vrbov́a and Whittington [17], on the other hand, found a phase boundary separating
the AE and DC phases and two triple points. The phase diagram shown in figure 1 is therefore
qualitatively different from the one found by Vrbová and Whittington [17].

An interesting feature of the phase diagram shown in figure 1 is the bend in theuc-line
separating the adsorbed expanded and collapsed phases. This may be due to competition
between entropic fluctuation and the monomer–monomer attraction. The phase diagram has
four distinct regions:

(1) Foru < uc(bulk) the DE phase transforms into AE when theω value is increased.
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Figure 1. The phase diagram of a surface-interacting linear polymer in three-dimensional space.
The surface is two-dimensional and exhibits a collapse transition. Theω andu axes represent,
respectively, the Boltzmann factor of surface interaction and the monomer–monomer attraction.
Regions marked by AE, AC, DE and DC represent, respectively, the adsorbed polymer in the
expanded state and collapsed state and, the desorbed polymer in the expanded and collapsed
states. uc(bulk) anduc(surface) correspond to theθ -point for the three-dimensional bulk and
two-dimensional surface, respectively, which are indicated by arrows.u∗c (surface) is the maximum
value ofuc(surface) as indicated by the arrow.

(2) Foru > u∗c (surface) (for a definition ofu∗c (surface) see figure 1), the DC phase transforms
into AC as the value ofω is increased.

(3) Foruc(bulk)< u < uc(surface), one comes across three phases, namely DC, AC and AE,
asω is increased.

(4) Foruc(surface)< u < u∗c (surface) the system passes through four phases, namely DC,
AC, AE and AC (re-entrant) asω is increased.

When the surface–monomer interaction is low (say 1.5) and the monomer–monomer
attraction has a value betweenuc(bulk) anduc(surface) (say 1.80) the chain is in a desorbed
collapsed state. If we now increaseω, keepingu fixed, we cross the phase boundary between
DC and AC atω = ωc(u). At ω > ωc the polymer globule becomes attached to the surface
and remains more or less intact owing to the dominance of monomer–monomer attraction. A
further increase inω may make the globule structure unstable as energetic monomers prefer
to be in contact with the surface. Therefore, the polymer conformation is transformed into the
expanded state as the monomer–monomer attraction is not strong enough to form a collapsed
phase on the surface. An interesting situation arises when the monomer–monomer attraction
has value betweenuc(surface)< u < u∗c (surface). In this case the competition between
entropy fluctuations and effects due to monomer–monomer attractions become more subtle
and the chain conformation depends on this competition. It is because of this competition that
we haveu∗c (surface)> uc(surface). Note that althoughω > ωc, it is still not large enough
to have all monomers strictly on the surface. There may be some fluctuations perpendicular
to the surface. Whenω becomes large enough that this fluctuation gets suppressed, i.e. all
monomers lie on the surface andu is larger thanuc(surface), the polymer chain moves into the
collapsed phase. Therefore, we find two AC phases separated by an AE phase for values of
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uc(surface)6 u 6 u∗c (surface). The AC phase forω > ωc is essentially a three-dimensional
structure attached to the surface while the other AC (re-entrant) phase for higher values ofω

is a true two-dimensional compact globule phase.
A few years ago Kumar and Singh [22] noted that in a system in which collapse only

takes place on the surface and not in the bulk, theuc-line separating the adsorbed expanded
and collapsed phases bends towards a larger value ofu as it approaches the special adsorption
line. A feature similar to that exists here. But, since in the present case the collapsed phase
also exists in the bulk and the bulkuc-line should meet the surfaceuc-line, the latter bends and
both meet at the specialθ -point.

Summarizing, we studied a SASAW in the presence of an attracting impenetrable wall
and estimated the phase boundaries separating different phases of the polymer chain from data
obtained by exact enumerations. Although the results reported here are based on expansion
up to 16 terms, the phase diagram is found to exhibit many interesting features. A detailed
study including a Monte Carlo simulation is in progress and results including the values of the
surface critical exponents with error bars will be reported in a future publication.

This work was supported by the Department of Science and Technology (India) through a
project grant.
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